In 2-dimensions an archery target has circular symmetry. | A surface of revolution has circular symmetry around an axis in 3-dimensions. |
Rotational circular symmetry is isomorphic with the circle group in the complex plane, or the special orthogonal group SO(2), and unitary group U(1). Reflective circular symmetry is isomorphic with the orthogonal group O(2).
Rotational circular symmetry has all cyclic symmetry, Z n as subgroup symmetries. Reflective circular symmetry has all dihedral symmetry, Dih n as subgroup symmetries.
A double-cone, bicone, cylinder, toroid and spheroid have circular symmetry, and in addition have a bilateral symmetry perpendicular to the axis of system (or half cylindrical symmetry). These reflective circular symmetries have all discrete prismatic symmetries, D nh as subgroups.
+ Clifford torus stereographic projections | ||
(simple) | 1:5 | 5:1 |
Rotational spherical symmetry is isomorphic with the rotation group SO(3), and can be parametrized by the Davenport chained rotations pitch, yaw, and roll. Rotational spherical symmetry has all the discrete chiral 3D point groups as subgroups. Reflectional spherical symmetry is isomorphic with the orthogonal group O(3) and has the 3-dimensional discrete point groups as subgroups.
A scalar field has spherical symmetry if it depends on the distance to the origin only, such as the potential of a central force. A vector field has spherical symmetry if it is in radially inward or outward direction with a magnitude and orientation (inward/outward) depending on the distance to the origin only, such as a central force.
|
|